
Temporal Interlacing Network

Hao Shao1,2 Shengju Qian3 Yu Liu3∗

1Tsinghua University 2SenseTime X-Lab 3The Chinese University of Hong Kong
shaoh19@mails.tsinghua.edu.cn, sjqian@cse.cuhk.edu.hk, yuliu@ee.cuhk.edu.hk

Abstract
For a long time, the vision community tries to learn the
spatio-temporal representation by combining convolutional
neural network together with various temporal models, such
as the families of Markov chain, optical flow, RNN and tem-
poral convolution. However, these pipelines consume enor-
mous computing resources due to the alternately learning pro-
cess for spatial and temporal information. One natural ques-
tion is whether we can embed the temporal information into
the spatial one so the information in the two domains can be
jointly learned once-only. In this work, we answer this ques-
tion by presenting a simple yet powerful operator – temporal
interlacing network (TIN). Instead of learning the temporal
features, TIN fuses the two kinds of information by interlac-
ing spatial representations from the past to the future, and
vice versa. A differentiable interlacing target can be learned
to control the interlacing process. In this way, a heavy tempo-
ral model is replaced by a simple interlacing operator. We the-
oretically prove that with a learnable interlacing target, TIN
performs equivalently to the regularized temporal convolu-
tion network (r-TCN), but gains 4% more accuracy with 6x
less latency on 6 challenging benchmarks. These results push
the state-of-the-art performances of video understanding by a
considerable margin. Not surprising, the ensemble model of
the proposed TIN won the 1st place in the ICCV19 - Multi
Moments in Time challenge. Code is made available to facil-
itate further research.1

Introduction
With the explosive growth of video data and the increas-
ing applications, the requirements for speed and accuracy
of video understanding are gradually growing. It is also one
of the major research hot-spots in computer vision in re-
cent years. Visual behavior extends from 2D image space to
3D space-time, which dramatically increases the complexity
of behavioral expression and downstream recognition tasks.
How to embed the temporal dynamics into spatial represen-
tations remains challenging.

Over the past few decades, researchers try to address
video understanding via three pipelines. Before the early
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Figure 1: A brief introduction to three video understanding
pipelines. (a) Use hand-crafted features extracted from each
frame to help classification. (b) Take a 3D convolution or
(2+1)D convolution layer as the temporal feature extractor.
(c) Interlace spatial representations of raw frames at differ-
ent times.

deep learning era, hand-crafted temporal representation, e.g.
optical flow (Wang and Schmid 2013) is commonly used
to help the frame representation in video classification, as
shown in Figure. 1(a). The results are unsatisfying when
used alone. After entering the era of deep learning, the
second way, as depicted in Figure. 1(b), takes neural net-
works as the feature extractor. The representative methods
include LSTM (Ullah et al. 2017) (Donahue et al. 2015), and
network with temporal modeling: C3D (Tran et al. 2015),
I3D (Carreira and Zisserman 2017), R (2+1D) (Tran et al.
2018), S3D (Xie et al. 2018), TSM (Lin, Gan, and Han
2018), SlowFast (Feichtenhofer et al. 2018). The convolu-
tion kernel is capable of extracting high-dimensional fea-
ture and has obtained promising results in many complex
benchmarks. The major problems of these solutions change
to their vast number of parameters and FLOPs, which make
the network hard to converge and prone to overfitting. The
third pipeline is proposed by us, as shown in Figure . 1(c). It
fuses the temporal information via interlacing spatial repre-
sentations in the temporal dimension. The fused representa-
tion can be processed directly in later network layers. This



pipeline introduces little extra parameters and FLOPs, main-
taining complex interactions in the temporal domain.

In this paper, we introduce an efficient architecture unit
called TIN, which aims at promoting the quality of fusion
and modeling with temporal information. The proposed
TIN is proved to be equivalent to the regularized temporal
convolution network (r-TCN) theoretically. Similarly, TIN
is pluggable into any location of the network with little
FLOPs and parameters as it retains the spatial size of the
input feature map and is extremely lightweight. As shown
in Figure. 1(c), TIN directly utilizes interlaced spatial
representations instead of extracting features from a heavy
network along with temporal dimension. Our architecture
is composed of 3 steps: Firstly, our module splits the
input channel-wise feature into several groups, obtaining
the offsets and weights of neighboring frames to mingle
the temporal information. Secondly, we apply the learned
offsets to their respective groups through shifting operation
and also interpolate the shifted feature along with temporal
dimension. Finally, we concatenate the split features and
temporal-wisely aggregate them with the learned weights.
The grouped offsets can be viewed as separate convolution
kernels with different sizes. This design makes our TIN
module capable of capturing the long-range temporal
relationship and adaptive to various sampling rates across
datasets. Besides, the group-wise offsets try to fuse more
temporal information at different time stamps.

To sum up, we propose an efficient and accurate frame-
work for video recognition with TIN, which has a strong ca-
pability of temporal modeling. We also theoretically prove
that Temporal Interlacing Network is equivalent to the reg-
ularized temporal convolution network (r-TCN). Exhaustive
experiments further demonstrate the proposed TIN gains 4%
more accuracy with 6x less latency, and finally be the new
state-of-the-art method. Especially, TIN performs as the core
architecture in the 1st solution of ICCV19 - Multi Moments
in Time challenge.

Related Work
Video Understanding: With the flourishing development
of computing resources and data collecting in recent years,
video understanding has caught on dramatically as it pro-
vides a wide range of applications. Although CNN archi-
tectures have achieved great success on static images, the
additional temporal dimension provided in videos inflates
the data complexity, the FLOPs of network parameters, and
the brittle training procedure significantly. Therefore, how
to deal with the information on the temporal dimension,
which delivers another important motion cue and alleviates
the complexity, is crucial.
Before the beginning of the deep learning era, many stud-
ies used some hand-crafted features to help video classifica-
tion, including HOG3D (Tran et al. 2015), SIFT-3D (Sco-
vanner, Ali, and Shah 2007), Action-Bank (Sadanand and
Corso 2012). Improved Dense Trajectories (iDT) (Wang and
Schmid 2013) is widely exploited in the field of video un-
derstanding, as it provides an efficient video representa-
tion and boosts the performance of the models that only

use RGB as training data. Two-stream (Simonyan and Zis-
serman 2014) method obtained a huge improvement with
the optical flow input. Since CNN works well on 2D static
image understanding, some propose to use 2D CNN di-
rectly in video understanding with extended temporal di-
mensional.TSN proposed to classify the video by fusing the
class scores from the frames of different segments. How-
ever, it can only fuse the temporal information after com-
puting the class score. The model performs well on datasets
that do not depend on temporal relationships (such as K600,
UCF101, HMDB51), while it performs poorly on datasets
that rely heavily on that (such as something2something v1,
something2something v2, jester). The reason is that utiliz-
ing 2D CNN for video recognition is essentially exploring
static representation learning and still an image classifica-
tion. It can only classify partial frames in the video and in-
tegrate the results. Therefore it is restrained from capturing
compact temporal information. For example, in the some-
thing2something v1 dataset, the class ”Pulling something
from left to right” and the class ”Pulling something from
right to left” are completely inseparable in basic convolution
neural network.
Deformable Temporal Modeling: Recent works about de-
formable convolution focus on how to deal with spatial
transformations effectively, DCNv1 (Dai et al. 2017) and
DCNv2 (Zhu et al. 2019) significantly improve performance
on the previous state-of-the-arts on semantic segmentation
and object detection. Spatial Transformer Networks (Jader-
berg et al. 2015) use global affine transformation to learn
translation-invariant and rotation-invariant feature represen-
tation. TSM proposes to shift the feature map along the tem-
poral dimension based on TSN. Nevertheless, it can only
shift with fixed displacement and cannot adapt to videos
with an uneven number of frames. Inspired by the de-
formable convolution, we propose a changeable shift opera-
tion that can adapt to specific datasets and the distribution of
extracted frames.
Self-attention: We also re-visit the self-attention (Vaswani
et al. 2017) mechanism in this framework. The attention
mechanism is originally proposed in the field of machine
translation and other natural language processing tasks. The
module can be understood as a way of calculating the con-
text in one position using a weighted sum of all positions in
a sentence. (Hu, Shen, and Sun 2018) tried to improve the
performance of image classification by modeling the inter-
dependencies between the features along the channel dimen-
sion. (Wang et al. 2018) further proposed the non-local neu-
ral network for vision tasks such as video classification, ob-
ject detection, and instance segmentation based on the self-
attention method attention to capture long-range dependen-
cies.

Temporal Interlacing Network (TIN)
In this section, we introduce the framework of our temporal
interlacing network. It is a simple yet effective design that
made of two components: deformable shift module and dif-
ferentiable temporal-wise frame sampling. In the following,
we first describe the intuition behind TIN and then explain



how to tackle existing problems about temporal modeling in
our framework.

Intuition
In temporal datasets, videos often focus on objects or hu-
mans performing the interactions. For better capturing the
inherent temporal semantics, the critical concern in video
understanding compared to image recognition is to model
the “frame-wise” information. Existing efficient 2D CNN
approaches are to relieve the heavy computational cost.
However, the trade-offs between learning spatial and tem-
poral features jointly and its heavy computation overhead
always exist.

Previous works focus on extending 2D CNN representa-
tion with an extra temporal dimension. In order to mingle
features at different times, the temporal convolution network
is introduced. This operation obtains temporal information
by looking along the temporal dimension with a fixed visual
range. However, a static temporal receptive field removes the
computation cost as well as multi-level spatial information.
A dynamic temporal receptive field is crucial for jointly em-
bedding the temporal information flow into the spatial one.

In order to integrate temporal information at different
times, we can provide different frames with a unique in-
terlacing offset. Instead of habitually assigning each chan-
nel with a separately learnable offset, we adopt distinctive
offsets for different channel groups. As observed in Slow-
Fast (Feichtenhofer et al. 2018), human perception on object
motion focuses on different temporal resolutions. To main-
tain temporal fidelity and recognize spatial semantics jointly,
different groups of temporal receptive fields pursuit a thor-
ough separation of expertise convolution. Besides, groups of
offsets also reduce the model complexity as well as stabilize
the training procedure across heavy backbone architectures.
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Figure 2: Architecture of TIN: our input video clips com-
posed of uniformly sampled from raw frames are processed
by our modified 2D ResNet-50. (a) We plug our module be-
fore the convolution layer in each block. (b) Our module ob-
tains offsets and weights by OffsetNet and WeightNet, then
shifts and samples the feature along with the temporal di-
mension.

In our work, we fuse temporal information along the tem-
poral dimension through inserting our module before each
convolutional layer in the residual block (He et al. 2016), as
illustrated in Figure. 2(a). Based on 2D CNN framework for
video recognition, given a video, 8 or 16 frames are firstly
uniformly sampled and then stacked as the input. TIN maps
an input U ∈ RT×C×H×W to the same size feature maps V
∈ RT×C×H×W in each block. Here N is the batch size, T
represents the temporal dimension. Besides, C is the num-
bers of the channel,H andW refer to the spatial dimensions.
In the notation that follows, we take Offsetg to denote the
learned offset and take Eg to denote the learned weight, re-
spectively, where g means the parameters of the g-th group.
Next, we will introduce our OffsetNet and WeightNet.

OffsetNet As shown in Figure. 2(b), we firstly squeeze
global spatial information into a temporal channel descrip-
tor. The descriptor consists of one global average pooling
layer, of which the kernel size is H ×W . We then transpose
the T ×C output to the shape of C×T . The obtained repre-
sentation only retains information on temporal and channel
dimensions, which we termed it as z. The c, t-th element of
z is computed by:

zc,t = Pooling(Uc,t) =
1

H ×W

H∑
m=1

W∑
n=1

Uc,t(m,n) (1)

To obtain the requisite parameters for the Differentiable
Temporal Sampling Module, We exploit two paths to gen-
erate Offsetg and Eg , respectively. The first path is to uti-
lize the information extracted from pooling operation, tak-
ing a 1D convolution layer to aggregate the channel infor-
mation. After the convolution operation, the feature map is
transformed to s ∈ RT . Then two fully-connected layers and
ReLU (Nair and Hinton 2010) activation are applied to the
output. The FC layers are capable of aggregating the infor-
mation along the temporal dimension. The bias of the second
fully-connected layer is initialized to make the post-sigmoid
output start from 1.

offsetraw = σ(W2δ(W1(F1dconv(z)))) ∈ RG (2)
In Equation 2, δ denotes ReLU function,F1Dconv refers to
the 1D convolution layer, W1 ∈ RT∗T , W2 ∈ RT∗G and G
means the groups of channels. σ here refers to the sigmoid
function, which transforms the output to (0, 1). In order to
rescale the raw offset to the range of (−T

2 ,
T
2 ), scaling the

output to this interval with sigmoid is found helpful for the
stability and performance of the model. We rescale the off-
sets to this range for a global temporal receptive field.

offset = (offsetraw − 0.5)× T (3)
WeightNet Secondly, Eg is calculated through the

WeightNet. Our WeightNet consists of two parts: one con-
volution layer and a sigmoid function. The kernel size of
the 1D convolution layer is 3, and the kernel numbers equal
to the groups. Following the convolution layer, the sigmoid
function and rescale module can scale our output to the
range (0, 2). Here we set the initial bias of the convolution
layer to 0, and the final initial output will be 1.0.
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Figure 3: The pipeline of differentiable Temporal-wise
Frame Sampling. The module splits the feature map into sev-
eral groups and shifts them by different offsets according to
their group. Then compute the weighted sum along with the
temporal dimension. Finally, we concatenate the split groups
into the integral feature map, which is the same size as the
input data.

Differentiable Temporal-wise Frame Sampling
To perform a shift along the temporal dimension of the input
feature map, we design differentiable temporal-wise frame
sampling. Above all, the input feature map U is split into 2
parts along the channel dimension: one is to be shifted by
different offsets according to different groupings, while the
rest remains un-shifted.

As illustrated in Figure 3, the shifted part is divided into
four groups equally. In our work, we adopt a novel strategy
to utilize symmetric offset. If we have n groups, we only
need to learn the offsets of half groups n

2 , and the remained
half are symmetrically derived by the previous offsets. In
our setting, we keep 3

4C channels un-shifted and shift the
rest 1

4C channels.
Temporal-wise Frame Sampling Notably, this step is es-

sentially a linear interpolation process. For each group g to
be shifted, we assume that its offsetOg ∈ (n0, n0+1), n0 ∈
N, where Og denotes an arbitrary (fractional) values. The
group of channels will be shifted two times, firstly we need
to shift these channels by n0 and re-shift them by n0 + 1.
Then, we multiply the two sets based on the weights of
n0+1−Og andOg−n0 and add them together. This proce-
dure is shown in Figure. 2(b). Note that we assume the offset
∈ (0, 1). At last, all shifted and un-shifted channels will be
concatenated to feature map V which shares the same size
with input feature map U .

Uc,t = (n0+1−Og)Uc,t+n0 + (Og − n0)Uc,t+n0+1

Og ∈ (n0, n0 + 1), n0 ∈ N (4)

Temporal Extension Meanwhile, some features may be
shifted out and become ZERO due to the shift operator,
further losing their gradient during training. Note that
the temporal range of our input is [1, T ]. To alleviate this
problem, we set a buffer to help the shifted feature that falls
in the (0, 1) and (T, T + 1) intervals. When the shifted
time exceeds T + 1 or is less than 0, it will be clamped
to 0(e.g. Uc,t=0.4 = 0.6∗Uc,t=0+0.4∗Uc,t=1.0 instead of 0).

Temporal Attention As illustrated in Figure. 2(b), when
we concatenate the split groups of channels to V , the feature
map is multiplied by the weight E along the temporal di-
mension. Since some feature that belongs to both ends of the
temporal dimension is possibly shifted out, attention mecha-
nism is exploited to re-weight the feature and better capture
long-range information.

As illustrated in Table. 5, we found TIN has the best per-
formance when we divide the channels into four groups ex-
cept for the un-shifted part, which consists of 3

4C channels.
Among them, two groups use two offsets while the other two
use their reversed offsets.

Analysis
This work is built upon the idea of fusing a single frame with
neighboring frames in the channel dimension. Temporal Fu-
sion is completed through: 1. Shifting groups of channels.
2. Temporal attention with the offsets and weights learned
from target tasks. To help the symmetric flow of information
in the temporal dimension, we adopt the strategy of reverse
offsets. This prior brings an acceleration of convergence and
performance elevation.

Regularized Temporal Convolution Network In this
section, we prove that TIN is theoretically equivalent to
the Regularized Temporal Convolution Network. We assume
that the number of groups is equal to channel numbers in
the following proof. For the sake of understanding, we have
adopted a similar proof as in DCN. The convolution opera-
tor can be composed of two steps: 1) using a regular slice S
to sample the input feature map along the temporal dimen-
sion. 2)summing up the sampled values and multiply them
with weight. The slice S defines the receptive filed shape.
We firstly take a plain 1D convolution as an example,

S = {(−1), (0), (1)} (5)
defines a kernel with the size of 3.
For each element t0 along the output temporal dimension of
feature map V , we have the definition

Vt0 =
∑
sn∈S

w(sn)× Usn+t0 (6)

where sn represents locations in S, w(t0) denotes the
learned weight on the temporal dimension. In TIN, the
regular slice S will be accumulated with Oc, where c means
the number of groups. The feature in the same channel share
the same offset. Thus the formulation of TIN is defined as:

Vt0,c = w(t0)× Ut0+Oc
(7)

t0 is not an integer and Oc ∈ (n0, n0 + 1), n0 ∈ N:

Vt0,c = w(t0)× ((Oc − n0)× Utn0+1,c+

(n0 + 1−Oc)× Utn0
,c)

(8)

We can change Equation 4 into another form which is sim-
ilar to the definition of 1D convolution :

w
′

c = [(n0 + 1−Oc)× w(t0), (Oc − n0)× w(t0)] (9)



S
′

c = [n0, n0 + 1], n0 ∈ N (10)

Vt0,c =
∑

sn∈S′
c

w
′

c(sn)× Usn+t0 (11)

From Eq. 11 and Eq. 6, we can find that TIN is converted
to a constrained convolution kernel with a kernel size of 2.
Specifically, the divided groups of channels in our frame-
work indicates that inter-group channel possesses different
offset while the intra-group channels share the same offset.

Intuitively, different strategies of grouping lead to distinc-
tive numbers of equivalent convolution kernels, which fur-
ther validates the equivalence of proposed TIN and r-TCN.

Proposed arbitrary offsets also help the deformable con-
volution kernels have a global receptive field. And with TIN,
the follow-up network can obtain features from adjacent
frames at specific time by learning their respective offset and
weight. For example, if the learned offset are O1, O2, −O1,
−O2, and O1 ∈ (n0, n0 + 1), O2 ∈ (n1, n1 + 1), then in
one channel we have feature from t0, t0 + n0, t0 + n0 +
1, t0 + n1, t0 + n1 + 1 (assume no overlapping exists). In
this way, each channel mingles information from different
time stamps, further improving feature quality and facilitat-
ing temporal modeling.

We take ResNet-50 as our backbone. The next layer after
our module is a 1×1 2D convolution layer, which can be
seen as a Fully-Connected layer if we only consider the
temporal dimension, which integrates information from
different times. With the dynamic temporal receptive fields
proposed by TIN, it can further mix up the frames into short
video segments that can help capture more precise temporal
information. In contrast, it can only obtain information from
the fixed timetable without our design.

Experiments
In this section, we demonstrate the effectiveness of the pro-
posed TIN on many video datasets. We first introduce the
datasets used in our experiments. Then we provide a quan-
titative analysis with 2D CNN baseline and TSM (Lin, Gan,
and Han 2018). We also perform comparisons with the sota
results on the dataset Something (V1 & V2). To conclude,
we conduct ablation experiments about our TIN and study
the functionality of our design.

Setup and Implementation Details
Datasets we conduct experiments on six video recog-
nition datasets, including Something-Something (V1 &
V2) (Goyal et al. 2017), Kinetics-600 (Carreira and Zis-
serman 2017) (Carreira et al. 2018), UCF101 (Soomro,
Zamir, and Shah 2012), HMDB51 (Carreira and Zisserman
2017), Multi-Moments in Time (Monfort et al. 2019) and
Jester datasets. Among them, K600 is a large action dataset
that has 30k validation videos in 600 classes and 392k
training videos. Multi-Moments in Time is a large-scale and
multi-label video dataset which includes over two million
action labels for over one million three second videos.

The Something and Jester datasets focus more on temporal
modeling and the relationship inside video sequences. The
labels of these videos are abstract like “Dropping something
in front of something” and do not dependent on specific
events such as “air drumming”, “yoga”. The labels of K600,
UCF101, HMDB51, MMiT are more concrete.
Details We take ResNet-50 as our backbone for the fair
comparison with the state-of-the-art methods. Specifically,
our model takes segments with a size of T × 224× 224. 224
is the height and width of cropped frames. T is the number
of frames that refers to 8 or 16 in our setting. To facilitate
comparison with TSN, we do not downsample along the
temporal dimension. Regarding data augmentation, we use
spatial jittering and horizontal flipping to alleviate over-
fitting. Due to many video dataset are not large enough, we
set the dropout rate (Srivastava et al. 2014) to 0.5 and set
weight decay to 5e-4.
We use the mini-batch stochastic gradient descent (Bottou
2010) algorithm with a momentum of 0.9 as our optimizer.
We follow the common practice (Wang et al. 2016; 2018;
Qian et al. 2019) to initialize our network from pre-trained
models on Kinetics (Carreira and Zisserman 2017) and
freeze Batch Normalization (Ioffe and Szegedy 2015). The
initial learning rate is set to 0.005 and divided by 10 at 10,
20 epochs, which stops at 25 epochs.

Comparison with 2D CNN baseline and TSM

The Something-Something (V1) dataset shows the abstract
pre-defined action which human perform with common ob-
jects. The dataset consists of 108k videos of 174 classes.
It focuses on the modeling of Time Series. Traditional 2D
models have inferior performances on this dataset since their
basic architectures cannot capture complex temporal inter-
actions and get confused with the category in reverse or-
der(e.g. “Pushing something from left to right” and “Pushing
something from right to lest”).
In this section, we demonstrate that TIN can help TSN im-
prove significantly with little more computation and param-
eters overhead. We conduct comparisons with TSM in Ta-
ble. 2, Table. 3 and Table. 1. In Table. 2, we report the results
on three temporal-sensitive datasets: Something-Something
V1, Something-Something V2 and Jester. On Something
V1, TIN achieves 26.6% better performance compared to
2D TSN baseline and 1.5% better performance than TSM.
In Something V2 and Jester, TIN also outperforms other ap-
proaches by a large margin.
We also show the results on four temporal-insensitive
datasets: Kinetics-600, HMDB51, UCF101, Multi-Moments
in Time. TIN consistently outperforms the 2D baseline
and stronger TSM. For instance, on the large-scale dataset
Kinetics-600, TIN obtains 0.9% better performance than
TSM and 1.7% better performance than 2D baseline. TIN
is also one of the main modules of our top-1 solution in
ICCV19 Multi-Moments in Time (MIT) Challenge. In or-
der to demonstrate the efficiency of TIN, We also report the
accuracy, the parameters and FLOPs in Table. 1.



Model Backbone #Frame FLOPs/Video #Param. Val Top-1 Val Top-5
TSN BNInception 8 16G 10.7M 19.5 -
TSN ResNet-50 8 33G 24.3M 19.7 46.6

TRN-Multiscale BNInception 8 16G 18.3M 34.4 -
TRN-Multiscale ResNet-50 8 33G 31.8M 38.9 68.1

Two-stream TRNRGB+Flow BNInception 8+8 - 36.6M 42.0
ECO BNIncep+3D Res18 8 32G 47.5M 39.6 -
ECO BNIncep+3D Res18 16 64G 47.5M 41.4 -

ECOEnLite BNIncep+3D Res18 92 267G 150M 46.4 -
ECOEnLiteRGB+Flow BNIncep+3D Res18 92+92 - 300M 49.5 -

I3D 3D ResNet-50 32*2clip 153G * 2 28.0M 41.6 72.2
Non-local I3D 3D ResNet-50 32*2clip 168G * 2 35.3M 44.4 76.0

Non-local I3D + GCN 3D ResNet-50+GCN 32*2clip 303G * 2 62.2M 46.1 76.8
TSM ResNet-50 8 33G 24.3M 43.4 73.2
TSM ResNet-50 16 65G 24.3M 44.8 74.5

TSMEn ResNet-50 24 98G 48.6M 46.8 76.1
TIN ResNet-50 8 34G 24.3M 45.8 75.1
TIN ResNet-50 16 67G 24.3M 47.0 76.5

TINEn ResNet-50 24 101G 48.6M 49.6 78.3

Table 1: Quantitative comparison of TIN with other methods on Something-Something v1 dataset.

Dataset Model Acc1 Acc5

Something V1
TSN 20.4 48.1
TSM 45.5 75.4
Ours 47.0 96.6

Something V2
TSN 32.0 63.2
TSM 59.2 85.3
Ours 60.0 85.5

Jester
TSN 82.3 99.2
TSM 96.2 99.7
Ours 96.7 99.8

UCF101
TSN 90.1 98.7
TSM 92.6 99.1
Ours 93.6 99.1

HMDB51
TSN 63.9 88.2
TSM 69.5 90.3
Ours 72.0 92.0

Kinetics-600
TSN 68.7 88.2
TSM 69.5 89.5
Ours 70.4 89.6

Table 2: A comparison between TIN, TSM and 2D baseline
TSN. It shows TIN has better performance than the others.
All the below experiments were performed under the same
training settings with ResNet-50 backbone.

Comparison with State-of-the-arts

In this section, we show that TIN does not only have bet-
ter performance than 2D baseline TSN and Temporal Shift
Network, but also produces the best performance compared
with state-of-the-art methods on the datasets that focusing
on temporal modeling.

Evaluation on Something-Something v1 We conduct
comparison with Temporal Segment Network (TSN) (Wang
et al. 2016), Temporal Relation Networks (TRN) (Zhou et
al. 2018), Efficient Convolution Network for Online Video
Understanding(ECO) (Zolfaghari, Singh, and Brox 2018),
Inflated 3D Network (I3D) (Carreira and Zisserman 2017),
Non-local Neural Networks (Wang et al. 2018) and Tempo-
ral Shift Module (TSM) (Lin, Gan, and Han 2018). Table. 1
reports the result of proposed TIN and other representative
methods. Our TIN has an increasing inherence in model-

Method Backbone #Frmae mAP
TSN ResNet-101 5 58.92
TSM ResNet-101 8 61.06
TIN ResNet-101 8 62.22

Table 3: mAP on the validation set of the Multi Moments in
Time Dataset.

ing temporal information. We start with the setting that the
frames are 8 and the backbone is ResNet-50.

TSN produces unsatisfying results since it is not capable
of modeling temporal sequences. TRN fuses temporal in-
formation at high level after feature extraction and achieves
19.2% better performance than TSN. The previous state-of-
the-art TSM can fuse temporal information at all stages and
brings 1.4% improvement. Our proposed module TIN can
shift adaptive offsets according to specific datasets as well
as capture long-range information. Therefore it introduces
2.4% improvement to the current state-of-the-art TSM.

ECO (Zolfaghari, Singh, and Brox 2018) focuses on
the efficiency in video understanding. It is proposed to
merge long-term content rather than late temporal fusion.
Its FLOPs is smaller than I3d, Non-local I3D, and other
3D-Based models. When the input consists of 16 frames,
TIN still outperforms ECO significantly. ECO ensembles
a model that is trained with {16, 20, 24, 32} number
of frames. However, the parameters and FLOPs are too
large for deployment. The ensembled model has 6× more
parameters and 4× more FLOPs than our 16-frames
model. In order to facilitate the comparison of results, we
also provide one ensembled model trained from {8, 16}
frames. It has a 3.6% clear improvement compared to ECO
with 2.6× fewer FLOPs and 3× fewer network parameters.

Non-local I3D + GCN is a previously state-of-the-art
method. The method can capture long-range dependencies
and process the temporal information at all stages. Com-
pared with Non-local I3D, our 16-frames model gets 2.6%
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Figure 4: Comparison about the trade-offs between the ac-
curacy, the parameters and FLOPs

Method Val Top-1 Val Top-5
TSN 30.0 60.5
MultiScale TRN 48.8 77.6
2-Stream TRN 55.5 83.1
TSM16f 59.4 86.1
TIN16f 60.1 86.4

Table 4: Comparison of TIN against other methods on
Something-Something v2 dataset.

better performance and 5 × fewer FLOPs. We suppose that
the Non-local module uses lots of parameters to model the
feature in time and space dimension. However, Something
dataset mainly focuses on temporal modeling and is not sen-
sitive to spatial information.

Temporal Shift Module (TSM) is a strong baseline in this
dataset. TIN also obtains comparable performance to it. Our
8-frames model and 16-frames model have a 2% improve-
ment compared to TSM’s. Particularly, ensembled TIN us-
ing {8, 16} frames has about 2.8% better performance than
TSM with almost the same FLOPs and parameters.

Evaluation on Something-Something v2 Something v2
is a larger dataset compared to v1, the number of videos has
been greatly increased and the label noise has been greatly
reduced. We report the respective results of TIN, TRN and
TSM in Table. 4, where TIN also obtains a state-of-the-art
performance and is leaving a 0.7% gap to previous State-of-
the-arts.

Visualization of learned offsets and weights
In addition to video recognition accuracies, we want to at-
tain further insight into the learned offsets. Note that we
take Image-Net pre-trained model that will not influence the
learned temporal offsets, to remove the impact of the kinet-
ics pre-trained model. Our backbone is ResNet-50 and has 4
blocks, with {4, 4, 4, 4} layers in each block. We accumu-
late the mean offsets of each layer per group and provide the
different behavior of models with different frame inputs.

Groups Pretrain With Reverse Offsets Val Top-1
1 ImageNet True 42.0
2 ImageNet True 42.9
2 ImageNet False 41.1
4 ImageNet True 42.4
4 ImageNet False 42.6

Table 5: Accuracies with different numbers of groups and
reverse offsets

Learned Offsets In Figure. 5(a)(b), the offsets in the first
seven layers are almost zero, and we suppose that shal-
lower layers mainly focus on learning the spatial informa-
tion, since earlier temporal shifting may influence the abil-
ity of the network to process spatial information. As shown
in Figure. 5, the offsets after the first 7 layers gradually in-
crease. The result also indicates that temporal modeling on
high-level semantic features can have better performance.
From the comparisons between Figure. 5(a)(b), we can find
that when the input frames change from 16 to 8 frames,
the learned offsets also increase accordingly. It demonstrates
that our module learns that temporal information fusion on
higher levels can bring more improvement.

Learned Weights As shown in Figure. 5(c)(d), the
weights of the first and the last frames are significantly lower
than others’. This phenomenon shows that frames at both
ends lose partial information as it is shifted out. The weight
module of TIN adjusts the weights of frames at both ends to
reduce the impact on network training.

Ablation Experiments
This section provides ablation studies on Something v1,
which focuses more on temporal interactions.

Groups of shifted channels In Table. 5, We firstly
study the effect of group numbers. The best performance is
obtained when the group number is 2. Note that the group
numbers in Tale 5 do not include the reverse groups. If the
number increases or decreases, the performance will all
drop. This phenomenon indicates that: if the number is too
small, there will be fewer information from distinctive times
stages when integrating temporal information, thus unable
to model complex temporal dynamics; if the number goes
too large, it introduces much more context to integrate as
well as more brittle training process.

Reverse offsets We assume that the reverse offsets
can help interlacing temporal information symmetrically. It
equip TIN with a symmetric receptive field. Results in Ta-
ble. 5 further verify our hypothesis. The performance of the
second model with 2 groups and 2 reverse groups has 0.3%
improvement than the fourth model which has 4 groups and
0 reverse groups.

Conclusion
We propose a temporal interlacing network(TIN), a simple
yet powerful operator in temporal modeling. The learnable
shifting module learns to interlace temporal and spatial in-
formation jointly with little computation overhead. TIN en-
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Figure 5: Examples of the distribution of our learned offsets and weights from 8-frames input model and 16-frames model.
For each group’s offset, we plot lines to shows cumulative offsets on layers with different depths in (a)(b). We also present the
learned weights in the temporal dimension in (c)(d).

dows learned feature with both accurate and efficient repre-
sentation, advancing dominating results on video classifica-
tion.
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